Building the Symbolic Hieronymus Machine

The nice thing about a device without mechanical or electrical parts is the inherent simplicity in building one. And of all the rigs I’ve built, this one gets the prize for most enigmatic – at least so far.

Check out this post if you would like to learn about the backstory of this device and what people claim it does. The focus here is just building one.

Here I present designs for two different versions of the machine:

The first was inspired by the original concept as detailed by editor John Campbell in the February 1957 edition of Astounding Science Fiction.

In this issue, he penned an article entitled “Unprovable Speculation”, which included photos and specifics on the construction of a device which led him to ultimately conclude “whatever it is, it isn’t operating on physical science principles”.

The second and even simpler design was inspired by this post by researcher Mark Boccuzzi, from the Windbridge Institute.

This piece is a fascinating read as in addition to detailing how to build the device, Boccuzzi suggests ways to use it to predict the future. (He discusses his attempt to predict election results.)

Astounding Science Fiction – February 1957

Design #1

Here’s everything you need to build the first version. As you can imagine with a symbolic machine, you can take liberties with the specifics of the design.

As long as the relationships between symbolic components are maintained, the end result should be the same.

Here’s what I used:

  • A small wood project box with a lid
  • A laminated schematic of the device components. You can download my template here
  • A small picture frame
  • A small canvas and foam board for mounting the schematic
  • A control knob
  • A brass rod with a width that can fit the control knob. (I used 1/4 inch diameter)
  • A laminated template for a dial gauge. I used Blocklayer for the design
  • A small block of clear plastic to represent an “optical prism”
  • A length of thread to represent electrical wires
Symbolic Hieronymus Device – Design #1
Symbolic Schematic

The schematic template represents the various physical components that were part of the non-symbolic device originally invented by Dr. Hieronymus. Here’s what the symbols mean:

The “sensor pad” represents a tactile pad that’s used to determine the “rate” for a sample.

The “rate” is a numeric value associated with a particular sample. When analyzing a sample or object, the idea is to slowly turn the control knob while you move your finger back and forth across the sensor pad. When you feel a change, resistance, or something that just feels different, note the number associated with the control knob and that’s the “rate”.

The rate value acts as an identifier for a particular object that is being analyzed. Once you have a known rate for a particular object or material you can use that to help identify other unknown samples.

The “witness well” is the location where you place the sample to be analyzed.

The rest of the schematic represents the electronic components that made up the circuit of the actual (non-symbolic) Hieronymus device.

Here’s how to build it:

First step, paint the project box if it’s not already finished. I used Rust-Oleum for this and chose a semi-gloss black enamel.

Next, print out the schematic template and laminate the paper. Once laminated, cut the paper to separate the “sensor pad” from the rest of the schematic.

Make sure when cutting the template to include a section of the “wires” that are at the bottom of the “sensor pad”.

Mount the laminated sensor pad in the small picture frame while leaving the symbolic wires outside of the frame (see the image below).

Set aside the frame. At a later step, you will be gluing it to the outside of the project box.

As a next step, mount the remaining part of the schematic diagram to the inside of the project box.

Some planning is needed as to where to mount the schematic. The location will be dependent on the dimensions of your project box.

The control knob will be on the outside of the box and connected to a shaft that terminates at the center of the circle that represents the “rate” on the schematic inside.

The laminated schematic will need to be mounted in a secure way to the inside of the lid so that the box can be opened and positioned correctly to accommodate the control knob shaft.

I decided to use a small canvas purchased from an art store. I glued a foam board with the same dimensions as the laminated schematic to the top of the canvas and then glued the schematic to the foam board.

Painted Project Box
Laminated Schematic Diagram
Hieronymous schematic in picture frame
Sensor Pad in Picture Frame

I decided to screw the canvas to the lid of the box to make it extra secure. The image above shows where the shaft for the control knob should terminate.

After mounting the laminated schematic, drill two small holes through the box lid. One is to accommodate the control knob shaft and the other is for the sensor pad “wires”. The hole for the wires should be located under the picture frame.

I used J-B KwickWeld to glue the picture frame to the box lid. It is ideal for bonding metal to wood.

Next, print and laminate a dial gauge for the control knob. I recommend using Blocklayer for this. They have an online template generator that can create customized gauges that can match the dimensions of your project box.

Cut out the gauge template and glue it to the lid of the project box centered around the hole for the control knob shaft. I used rubber cement to glue the laminated paper to the wood box.

Cut the brass rod to a length so when connected to the knob will extend about 1/4 inch beyond the mounted schematic on the inside of the box.

I used a 1/4 diameter brass rod that I picked up at a hobby store. The diameter exactly fit the dimensions of a knob that I happened to have on hand. The knob I used was similar to what you might find on a guitar effects pedal. Use a hex key to attach to the rod.

Push the rod through the hole in the top of the box and on the other end glue a small piece of transparent plastic that represents an “optical prism” that was part of the non-symbolic Hieronymus device design.

Almost anything can be used for this. I attached the plastic to the rod using a little dab of the KwikWeld.

The next step is to connect the “wires” from the sensor pad on the top of the box to the schematic leads underneath.

What to use for the wires? Needle and thread of course, as these are “symbolic” wires!

For the last step, I added some flourish to the top of the box. A decorative metal gear to represent where the “witness well” is located. This is where you will place your sample when operating the device.

Picture Frame with Sensor Pad Glued to Box
Radial Gauge Designed using Blocklayer
Control Knob and Brass Rod
Thread for Symbolic Wires

That’s all there is to the first design. You can see my version of the device below.

Symbolic Hieronymus Machine – Design #1

Design #2

The second version of the symbolic Hieronymus device is a marvel in it’s simplicity.

Just four parts are needed:

  • An 8 1/2″ x 11″ wooden shadow box
  • A laminated schematic of the device components. You can download my template here
  • A control knob. For this version, I used an older style knob that you might find on a vintage guitar amp
  • A potentiometer. Almost any type can be used, just look for one with a diameter that will fit your control knob

After laminating the schematic, glue it to the top of the shadow box. I found that rubber cement works well for this.

Drill a hole through the center of the “rate” dial using a bit big enough for the shaft of the potentiometer.

Place the potentiometer on the underside of the shadow box, run the shaft through the hole, secure it with a locking nut and then attach the control knob.

That is it for this design!

Schematic Template Mounted on Shadow Box
Potentiometer
Symbolic Hieronymus Machine – Design #2
Underside of Shadow Box

Make sure to reach out if you decide to build one of your own symbolic Hieronymus machines and would like to share your design!

Please follow and like us:

Leave a Comment